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Fuzzing has become a growingly popular method for finding software bugs. Interest

in this area of research has been partially reignited by DARPA’s Cyber Grand Challenge

(CGC) binaries, which focused on creating automatic systems capable of finding flaws

and formulating patches [3]. Since then, a multitude of e↵ective and diverse fuzzers have

been published like AFLGo, Angora, Driller, QSYM, and VUzzer. Prior to the Cyber

Grand Challenge, fuzzing was already an area of interest and fuzzers like BuzzFuzz and

COMET had been developed. All of these fuzzers have presented powerful techniques

in the area of software fuzzing.

However, embedded systems do not get to benefit from these recent advances. With

such a range in the complexity and purposes of these devices, along with the fact that

source code is usually unavailable, finding an e�cient, correct, and easy approach to

testing the security of these devices seems infeasible.

A variety of diverse approaches and techniques have come out in recent years. Meth-

ods for input generation for these fuzzers range from mutational, generational, sequen-

tial, constraint solving or some unique combination of the four. Each strategy has its

own advantages and disadvantages. Through research, it’s been shown that combina-

tions of these techniques yield the best results. Fuzzers like AFLGo, Angora, BuzzFuzz,

COMET, Driller, QSYM, and VUzzer have all proven to be successful in certain sce-

narios and have been proven to be e�cient at fuzzing software. We present TDFF, a

Taint-Driven Firmware Fuzzer that attempts to solve the problem of fuzzing embedded
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systems at scale by making use of taint analysis paired with fuzzing strategies from

afl-fuzz [18].
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Chapter 1

Introduction

Fuzzing has become a growingly popular method for finding software bugs. Interest

in this area of research has been partially reignited by DARPA’s Cyber Grand Challenge

(CGC) binaries, which focused on creating automatic systems capable of finding flaws

and formulating patches [3]. Since then, a multitude of e↵ective and diverse fuzzers have

been published like AFLGo, Angora, Driller, QSYM, and VUzzer. Prior to the Cyber

Grand Challenge, fuzzing was already an area of interest and fuzzers like BuzzFuzz and

COMET had been developed. All of these fuzzers have presented powerful techniques

in the area of software fuzzing.

However, embedded systems do not get to benefit from these recent advances. With

new embedded devices being put on the market every day, these systems are becoming

increasingly di�cult to test. Companies previously uninvolved in tech are now coming

out with “smart” products for consumer homes like smart light bulbs and refrigerators.

The medical field also makes use of embedded technology ranging from automated

insulin pumps to smart pacemakers. Critical infrastructure systems also rely on these

embedded devices – water treatment, electric power transmission, and wind farms all

most commonly make use of a variety of programmable logic controllers (PLCs). With

such a range in the complexity and purposes of these devices, along with the fact that

source code is usually unavailable, finding an e�cient, correct, and easy approach to

1
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testing the security of these devices seems infeasible.

We attempt to address this problem by building on top of already existing projects.

Avatar2 is an orchestration framework designed to support dynamic analysis of embed-

ded devices [8]. Avatar2 makes use of PANDA, an open-source Platform for Architecture-

Neutral Dynamic Analysis. We make use of one of PANDA’s unique features – the ability

to record whole system executions of embedded devices [4]. Within PANDA, we write a

taint analysis plugin and use it during replays of execution recordings. This plugin helps

make informed decisions of which areas of code to fuzz in embedded system firmware,

helping us find meaningful bugs.



Chapter 2

Related Work

A variety of diversive fuzzers have come out in recent years. Methods for input

generation for these fuzzers range from mutational, generational, sequential, constraint

solving or some unique combination of the four. As research has shown, each strategy

has its own advantages and disadvantages. Whilst some fuzzers are quick at generating

input, others take additional time in order to create fewer, yet more quality inputs.

Through research, it’s been shown that a combination of both these techniques yield

the best results. Fuzzers like AFLGo, Angora, BuzzFuzz, COMET, Driller, QSYM, and

VUzzer have all proven to be successful in certain scenarios and have been proven to be

e�cient at fuzzing software.

The developers of AFLGo introduce the technique of Directed Greybox Fuzzing

(DGF), which generates inputs with the objective of reaching a given set of target pro-

gram locations e�ciently [1]. The researchers argue that most existing directed fuzzers

are based on symbolic execution, which spend considerable time with heavy-weight pro-

gram analysis and constraint solving. They introduce the meta-heuristic of Simulated

Annealing which assigns more energy to seeds that are closer to the target locations

while reducing energy for seeds that are further away. However, they conclude that this

technique is primarily useful in the areas of patch testing and crash reproduction.

While fuzzers based on symbolic execution produce quality inputs, input generation

3
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is slow. Many fuzzers have come out in recent years which attempt to solve path

constraints without symbolic execution. Angora [2] is one of them. Angora introduced

a variety of techniques to solve path constraints e�ciently: context-sensitive branch

coverage, scalable byte-level taint tracking, search based on gradient descent, type and

shape inference, and input length exploration.

BuzzFuzz uses dynamic taint tracing to automatically locate regions of original seed

input files that influence values used at key program attack points [5]. The taint in-

formation identifies promising locations of the input file to fuzz, while preserving the

syntactic structure of the original input file. This technique allows BuzzFuzz to ex-

pose errors located deep within large programs. However, a drawback is that the taint

instrumentator takes as input the source of the program under test, which is usually

unavailable for firmware images.

Another novel idea that has been introduced in the fuzzing domain is the idea of

a feedback loop. COMET (COverage Maximization using Taint) was developed as a

system for automatically obtaining a test suite for a program via a feedback loop that

maximizes line coverage directly [6]. Each iteration of the feedback loop considers a set

of inputs and for each input, a set of conditionals are both tainted by the inputs and

for which only one branch is covered. For each such conditional, the algorithm searches

for an input that exposes the other branch of the conditional, adding any it discovers

for consideration in the next iteration.

Driller is yet another fuzzer that has been proposed in recent years. It is a hybrid

vulnerability excavation tool which leverages fuzzing and selective concolic execution in

a complementary manner, to find deeper bugs [17]. It leverages selective concolic execu-

tion to find deep and meaningful bugs, while simultaneously improving the scalability

of concolic execution by using fuzzing to alleviate path explosion.

Hybrid fuzzing is yet another approach that has been proposed by researchers.

QSYM is a fast concolic execution engine designed to support hybrid fuzzing [19].

QSYM, along with other hybrid fuzzers, combine both fuzzing and concolic execution.
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The hopes are that the fuzzer will quickly explore simple branches such as x > 42 and

that the concolic execution will solve complex branches such as x == 0xDEADBEEF.

Another fuzzer that attempts to both be scalable and find deep and meaningful bugs

is VUzzer [10]. It does not require any prior knowledge of the application or input format

and utilizes an evolutionary fuzzing strategy to generate input. VUzzer implements a

“smart” mutation feedback loop based on control- and data-flow application features

without having to resort to less scalable symbolic execution. The researchers argue that

doing more work at the front-end produces fewer but better inputs.

Given this assortment of fuzzers each with their own unique approaches, we develop

TDFF, a taint-driven firmware fuzzer that uses taint analysis as a mutation feedback

loop.



Chapter 3

Background

This research aims to explore the feasibility and e�ciency of a taint-driven firmware

fuzzer. Previous research on fuzzing strategies has shown that fuzzers utilizing taint

analysis are generally slower at generating input. However, the task of fuzzing firmware

on embedded devices might make the use of taint analysis worth the extra overhead

when generating input. The processors found on these devices are significantly slower

than the ones used for smartphones, laptops, and PCs. Therefore, these devices do not

have the luxury of running many test cases within a certain timeframe. We hope that

the amount of time it takes to generate quality test cases is a favorable tradeo↵ when

fuzzing on embedded devices.

3.1 Emulation

We chose the avatar2 orchestration framework in conjunction with PANDA, the

Platform for Architecture-Neutral Dynamic Analysis, as the foundation of our research.

We leverage avatar2’s ability to automatically transfer the internal state of a de-

vice/application, as well as its ability to configure the forwarding of input/output and

memory accesses to physical peripherals or emulated targets [8]. This is particularly

useful as we can transfer state to avatar2 during execution we wish to analyze, and

transfer the state back to the hardware when physical peripherals need to be accessed.

6
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Avatar2’s integration of PANDA makes the choice to use avatar2 even more favor-

able. PANDA’s record and replay capabilities allow us to use and develop taint analysis

plugins that assist in analyzing previously-recorded executions. The results from taint

analysis will guide our fuzzer into generating quality inputs.

3.2 Dynamic Taint Analysis

Dynamic analysis is one of the tools researchers use in their arsenal to analyze

programs. Dynamic analysis is the ability to monitor code as it executes, and is a

favorable technique as it allows a researcher to examine actual executions and make

determinations based on run-time information.

The use of taint information while performing dynamic analysis allows a researcher

to evaluate which computations depend on taint sources. These taint sources generally

come from input.

The use of dynamic taint analysis predates to 2010 and has been used in the following

scenarios [16]:

• Unknown Vulnerability Detection

• Automatic Input Filter Generation

• Malware Analysis

• Test Case Generation

TDFF, the taint-driven firmware fuzzer, makes use of dynamic taint analysis in the

last scenario specified; test case generation.



Chapter 4

Design and Implementation

4.1 Overview

TDFF was implemented in both C code and Python code. TDFF utilizes a three-

step approach to addressing the problem at hand. The steps are as follows:

• Record

• Replay

• Explore

8
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Figure 4.1: General Overview of TDFF
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4.2 Setup

In order to set up TDFF, a few things need to be arranged:

• A device capable of being emulated by QEMU must be selected. We limited the

devices in this paper to ARM Cortex-M3 processors. However, with modifications

to TDFF, devices with a JTAG interface may be used.

• A proper transition address must be selected for the PANDA recording script.

Usually this is the address of where main() begins. One can find such an address

with the command arm-none-eabi-objdump -d firmware.elf | grep main.

• Both the MMIO start and end addresses must be specified in TDFF’s config file.

These addresses can be found in the memory map of the selected device.

• A proper exit address must be selected for the io taint PANDA plugin. Usually

this is the address of where exit() begins. One can find such an address with the

command arm-none-eabi-objdump -d firmware.elf | grep exit.

More detailed information on how to set up and use TDFF can be found on the

Github repository: https://github.com/m3lixir-nyu/tdff [15].

4.3 Record

A PANDA recording script must be supplied by the user. This script is responsible

for capturing firmware execution that later on will be taint analysed. The user is

responsible for determining which parts of firmware execution seem promising (usually

this is input parsing and processing).
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4.4 Replay

The PANDA recording is replayed and analysed with the tainted branch and

io taint PANDA plugins. The tainted branch plugin produces a report in pandalog

(plog) format that lists the addresses of every branch instruction in the replay that

depends on tainted data [4]. The io taint plugin was developed as part of this project.

It consists of five callbacks/features:

• PANDA CB BEFORE BLOCK EXEC

– Before executing each basic block, an entry is written to the pandalog con-

taining the address/pc of the block.

• PANDA CB PHYS MEM BEFORE READ

– Before a read of physical memory, the physical memory address is written to

standard output.

• PANDA CB PHYS MEM AFTER READ

– After a read of physical memory, the bytes that were read are written to

standard output in hex and ascii format. A taint label is also applied to the

input.

• PANDA CB PHYS MEM BEFORE WRITE

– Before a write to physical memory, the physical memory address is written

to standard output.

• PANDA CB PHYS MEM AFTER WRITE

– After a write to physical memory, the bytes that were written are written to

standard output in hex and ascii format.

The resulting pandalog provides insight to TDFF about which areas of the input

file to mutate on future fuzz runs.
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4.5 Explore

TDFF attempts to attain two goals: 1) achieve a higher degree of code coverage

and 2) discover bugs. The PANDA plugins used for analysis directly contribute to the

achievement of these two goals.

During the explore phase, a given pandalog is examined. The pandalog is ex-

amined entry by entry. For each entry, TDFF checks whether the entry contains a

tainted branch and/or io taint attribute.

If a tainted branch attribute exists in the pandalog entry, it means that the entry

refers to a branch instruction that depends on tainted data. TDFF creates a pair of the

address of the branch instruction as well as the taint label it depends on. The pair is

then examined to determine if it has been seen before. If it hasn’t, TDFF chooses to

explore the branch by mutating the input file at the o↵set that is associated with the

taint label. If it has, TDFF discards the input file and does not use it as a basis for

mutation in future fuzz runs.

If an io taint attribute exists in the pandalog entry, it means that the entry refers

to a basic block that was executed. For each entry that contains an io taint attribute,

TDFF records the address of the basic block. After examining the entire pandalog,

TDFF reports to the user which new blocks were discovered during the most recent

iteration of fuzzing.

Both of these PANDA plugins assist TDFF in achieving its goals. The tainted branch

plugin advises TDFF on what input files seem promising to mutate, and which areas

of said input files should be mutated. The io taint plugin reports the degree of code

coverage in terms of basic blocks executed.

4.5.1 Fuzzing Strategies

TDFF employs the deterministic fuzzing strategies used by afl-fuzz as described in

the technical whitepaper (with slight tweaks/modifications) [18]:
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• sequential bit flips with varying lengths and stepovers

• sequential addition and subtraction of small integers

• sequential insertion of known interesting integers (0, 1, INT MAX, etc)
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Evaluation

We tested the feasibility and e�ciency of TDFF on three separate programs, a simple

C program, a complex C program, and Libtasn1. The results are as follows:

5.1 Simple C Program

As a proof of concept, we created a simple C program to show the correctness of

TDFF. We flashed both the Nucleo-L152RE and the Nucleo-F207ZG with the following

program:

1 #include "mbed.h"

2

3 Serial pc(SERIAL_TX , SERIAL_RX);

4

5 DigitalOut myled(LED1);

6

7 int main() {

8 pc.printf("What's the meaning of Life , the Universe , and Everything ?\r\n");

9 myled = !myled;

10

11 char input [10];

12 gets(input);

13

14 pc.printf("You entered \"%s\".\r\n", input);

15

14
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16 if (input [1] == '2' && input [0] == '4') {

17 pc.printf("Correct .\r\n");

18 } else {

19 pc.printf("Incorrect .\r\n");

20 }

21

22 return 0;

23 }

Listing 5.1: Simple C Program

The program simulates a situation where the correct magic bytes are needed to enter

a branch of targeted code.

Given an input of:

\x34\x00\x0a

This program in particular searches for an input of:

\x34\x32\x0a

It took 18.11 minutes for TDFF to find the correct input on the Nucleo-F207ZG and

a total of 5149.81 seconds (1.43 hours) to complete all fuzz runs. Due to the COVID-19

pandemic, testing was unable to be done on the Nucleo-L152RE.

5.2 Complex C Program

To showcase TDFF’s ability to enter deeper parts of a program, we tested it on a

slightly more complex program inspired by Listing 3 in the VUzzer paper [10]:

1 #include "mbed.h"

2

3 Serial pc(SERIAL_TX , SERIAL_RX);

4

5 int main () {

6 char buf [20];

7 gets(buf);
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8

9 if (buf [1] == 0xEF && buf [0] == 0xFD) {

10 pc.printf("Passed first check .\r\n");

11 } else {

12 pc.printf("Failed first check .\r\n");

13 exit (1);

14 }

15

16 if (buf [10] == '%' && buf [11] == '@') {

17 pc.printf("Passed second check .\r\n");

18

19 if (strncmp (( const char *) &buf[15], "MAZE", 4) == 0) {

20 pc.printf("Passed third check .\r\n");

21 } else {

22 pc.printf("Failed third check .\r\n");

23 exit (1);

24 }

25 } else {

26 pc.printf("Failed second check .\r\n");

27 exit (1);

28 }

29

30 return 0;

31 }

Listing 5.2: Complex C Program

Given an input of:

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00

\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a

This program in particular searches for an input of:

\xFD\xEF\x00\x00\x00\x00\x00\x00\x00\x00

\x25\x40\x00\x00\x00\x4D\x41\x5A\x45\x0a

For this particular program, TDFF could not find the correct input on the Nucleo-

F207ZG.
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5.3 Libtasn1

Libtasn1 is the ASN.1 library used by GnuTLS, p11-kit and some other packages [7].
We tested the e↵ectiveness of TDFF on a Nucleo-F207ZG against a known buggy version
of Libtasn1 (version 3.5). The source code used to flash the Nucleo can be found on
Github {m3lixir-nyu-td↵.

According to NIST [9], 8 CVE’s have been assigned to Libtasn1 (version 3.5). After
24 hours of running TDFF, TDFF was not able to discover even one known CVE.
However, after 12 hours of running TDFF, TDFF was able to discover 1865 basic blocks.

One apparent issue that came up when evaluating the feasibility of TDFF on Lib-
tasn1 is the rate at which data is written to the embedded device. In our example, a
certificate of 699 bytes needed to be written to the program in order to begin. Through
testing, we found that at the very least, a sleep of 1.5 seconds was needed between
writes in order to avoid data loss through the serial port. In this particular example,
this means that 1048.5 seconds need to be allocated for every run of TDFF just for the
purpose of writing data. This amounts to half an hour per run of just writing data. For
TDFF to scale to much larger programs that require more data than 699 bytes, another
approach must be considered.



Limitations and Future Work

In this paper we’ve laid the foundation for fuzzing firmware on embedded systems.
However, over the course of the development of TDFF, many limitations were encoun-
tered.

Since TDFF’s foundation relies on avatar2 (and therefore QEMU and PANDA),
the use of TDFF is limited to firmware that is capable of being emulated by QEMU.
The scope of this paper was limited to ARM devices. Because of this decision, we
had discovered that avatar2 is capable of emulating ARM Cortex-M3 devices with ease.
However, since ARM Cortex-M4 support is continually being developed by QEMU, its
integration with avatar2 isn’t as stable, making TDFF not as user-friendly for ARM
Cortex-M4 devices.

Furthermore, avatar2 is developed and maintained by Eurecom’s S3 Group. There-
fore, any bugs and/or problems encountered in avatar2 are not as likely to be addressed
unless they are already a priority of the avatar2 developers.

Finally, as is a common problem with most other fuzzers, TDFF requires a copy
of the firmware in order to properly emulate the device on avatar2. This firmware is
needed in order to properly execute state transfers between avatar2 and the embedded
device.

18



Conclusion

The contribution of TDFF, the Taint-Driven Firmware Fuzzer, has laid a solid foun-
dation for the technique of taint-driven fuzzing for embedded systems. This preliminary
work shows that TDFF currently works on small examples but needs further develop-
ment to scale to larger real-world firmware.

We have attempted an approach to evaluating the security of embedded systems
through firmware fuzzing driven by taint analysis. The system presented in this pa-
per can be improved by extending on the development of the foundations it lies on;
QEMU and PANDA. An example of such progress is shown with the development of
the io taint PANDA plugin created for this project. With similar developments, TDFF
will have the ability to fuzz ARM Cortex-M3 and ARM Cortex-M4 devices with ease,
if not others.

In addition, to increase TDFF’s e�ciency in fuzzing such systems, more formal and
developed fuzzing strategies can be employed instead of the basic, straight-forward ones
used in TDFF’s current implementation.

The source code for this entire project can be found at https://github.com/

m3lixir-nyu/avatar2, https://github.com/m3lixir-nyu/avatar-qemu, https://

github.com/m3lixir-nyu/avatar-panda, and https://github.com/m3lixir-nyu/io_
taint [11] [12] [13] [14].
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