
 [1] Genealogy of recent fuzzers, traced back to Miller et al.’s work.

Problem
● Embedded systems are becoming increasingly 

difficult to test due to the range of complexity 
and purposes of these devices.

● To the best of our knowledge, an efficient, 
correct, and easy approach to testing the 
security of embedded devices has yet to be 
explored.

Goal
Fuzzing is one technique used to evaluate the 
correctness of software. We apply the techniques 
utilized in popular software fuzzers (i.e. BuzzFuzz, 
Driller, VUzzer, AFLGo, Angora) to fuzz embedded 
systems.

Taint Analysis
1. Write a taint analysis PANDA plugin.
2. Use the taint plugin during PANDA 

replays to gather taint propagation 
information.

Fuzzing
3. Use gathered taint information to make 

informed decisions on which areas of 
code to fuzz.

4. Find deep and meaningful bugs.
 [2] Currently testing with the STM32 Nucleo board.

As of this writing, we have developed the PANDA plugin 
responsible for taint. During a replay, the plugin applies taint to 
specified addresses of memory, and returns a log of 
meaningful taint points. These taint points will be used to fuzz 
interesting parts of memory. We plan on further developing 
and testing this fuzzer on other embedded devices, such as the 
Wago PFC100 Controller.

Acknowledgements: Brendan Dolan-Gavitt

References:

[1] https://arxiv.org/pdf/1812.00140.pdf

[2] https://www.st.com/en/evaluation-tools/nucleo-l152re.html

[3] https://www.wago.com/us/discover-plcs/pfc100

Problem Statement and Goals

Approach

Results

Taint-Driven Embedded Software Fuzzing

RSAC Security Scholar Melisa Savich
New York University

[3] Wago PFC100 Controller.

https://arxiv.org/pdf/1812.00140.pdf
https://www.st.com/en/evaluation-tools/nucleo-l152re.html
https://www.wago.com/us/discover-plcs/pfc100

